1,374 research outputs found

    Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. ^ Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. ^ These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external disturbances such as wind gusts and turbulence. This thesis develops the ARC-LMI attitude and position controllers for an X-configuration quadrotor helicopter. The inner-loop of the autopilot controls the attitude and altitude of the quadrotor, and the outer-loop controls its position in the earth-fixed coordinate frame. Furthermore, by intelligently generating a smooth trajectory from the given reference coordinates (waypoints), the transient performance is improved. The simulation results indicate that the ARC-LMI controller design is useful for a variety of quadrotor applications, including precise trajectory tracking, autonomous waypoint navigation in the presence of disturbances, and package delivery without loss of performanc

    Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine

    Get PDF
    Studies in cattle show CD8 cytotoxic T cells (CTL), with the ability to kill intracellular bacteria, develop following stimulation of monocyte-depleted peripheral blood mononuclear cells (mdPBMC) with antigen-presenting cells (APC, i.e. conventional dendritic cells [cDC] and monocyte-derived DC [MoDC]) pulsed with MMP, a membrane protein from Mycobacterium avium subsp. paratuberculosis (Map) encoded byMAP2121c. CTL activity was diminished if CD4 T cells were depleted from mdPBMC before antigen (Ag) presentation by APC, suggesting simultaneous cognate recognition of MMP epitopes presented by MHC I and MHC II molecules to CD4 and CD8 T cells is essential for development of CTL activity. To explore this possibility, studies were conducted with mdPBMC cultures in the presence of monoclonal antibodies (mAbs) specific for MHC class I and MHC class II molecules. The CTL response of mdPBMC to MMP-pulsed APC was completely blocked in the presence of mAbs to both MHC I and II molecules and also blocked in the presence of mAbs to either MHC I or MHC II alone. The results demonstrate simultaneous cognate recognition of Ag by CD4 and CD8 T cells is essential for delivery of CD4 T cell help to CD8 T cells to elicit development of CTL

    A Mycobacterium avium subsp. paratuberculosis relA deletion mutant and a 35 kDa major membrane protein elicit development of cytotoxic T lymphocytes with ability to kill intracellular bacteria

    Get PDF
    Efforts to develop live attenuated vaccines against Mycobacterium avium subspecies paratuberculosis (Map), using indirect methods to screen Map deletion mutants for potential efficacy, have not been successful. A reduction in the capacity to survive in macrophages has not predicted the ability of mutants to survive in vivo. Previous studies for screening of three deletion mutants in cattle and goats revealed one mutant, with a deletion in relA (ΔMap/relA), could not establish a persistent infection. Further studies, using antigen presenting cells (APC), blood dendritic cells and monocyte derived DC, pulsed with ΔMap/relA or a 35 kDa Map membrane protein (MMP) revealed a component of the response to ΔMap/relA was directed towards MMP. As reported herein, we developed a bacterium viability assay and cell culture assays for analysis and evaluation of cytotoxic T cells generated against ΔMap/relA or MMP. Analysis of the effector activity of responding cells revealed the reason ΔMap/relA could not establish a persistent infection was that vaccination elicited development of cytotoxic CD8 T cells (CTL) with the capacity to kill intracellular bacteria. We demonstrated the same CTL response could be elicited with two rounds of antigenic stimulation of APC pulsed with ΔMap/relA or MMP ex vivo. Cytotoxicity was mediated through the perforin granzyme B pathway. Finally, cognate recognition of peptides presented in context of MHC I and II molecules to CD4 and CD8 T cells is required for development of CTL

    Machine-learning assessed abdominal aortic calcification is associated with long-term fall and fracture risk in community-dwelling older Australian women

    Get PDF
    Abdominal aortic calcification (AAC), a recognized measure of advanced vascular disease, is associated with higher cardiovascular risk and poorer long-term prognosis. AAC can be assessed on dual-energy X-ray absorptiometry (DXA)-derived lateral spine images used for vertebral fracture assessment at the time of bone density screening using a validated 24-point scoring method (AAC-24). Previous studies have identified robust associations between AAC-24 score, incident falls, and fractures. However, a major limitation of manual AAC assessment is that it requires a trained expert. Hence, we have developed an automated machine-learning algorithm for assessing AAC-24 scores (ML-AAC24). In this prospective study, we evaluated the association between ML-AAC24 and long-term incident falls and fractures in 1023 community-dwelling older women (mean age, 75 ± 3 years) from the Perth Longitudinal Study of Ageing Women. Over 10 years of follow-up, 253 (24.7%) women experienced a clinical fracture identified via self-report every 4–6 months and verified by X-ray, and 169 (16.5%) women had a fracture hospitalization identified from linked hospital discharge data. Over 14.5 years, 393 (38.4%) women experienced an injurious fall requiring hospitalization identified from linked hospital discharge data. After adjusting for baseline fracture risk, women with moderate to extensive AAC (ML-AAC24 ≥ 2) had a greater risk of clinical fractures (hazard ratio [HR] 1.42; 95% confidence interval [CI], 1.10–1.85) and fall-related hospitalization (HR 1.35; 95% CI, 1.09–1.66), compared to those with low AAC (ML-AAC24 ≤ 1). Similar to manually assessed AAC-24, ML-AAC24 was not associated with fracture hospitalizations. The relative hazard estimates obtained using machine learning were similar to those using manually assessed AAC-24 scores. In conclusion, this novel automated method for assessing AAC, that can be easily and seamlessly captured at the time of bone density testing, has robust associations with long-term incident clinical fractures and injurious falls. However, the performance of the ML-AAC24 algorithm needs to be verified in independent cohorts. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)

    Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae

    Get PDF
    Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and asso- ciated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Measuring the predictability of life outcomes with a scientific mass collaboration.

    Get PDF
    How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course
    corecore